APPENDIX C

File Formats for Network
Weight, Template, Look, and Pattern Files

This appendix describes the formats used in network, weight, template,
look, and pattern files. These files are generally referred to as .net, .wis,
.tem, .loo, and .pat files, respectively.

NETWORK FILES

The .net file is used to specify the network architecture for the following
programs: iac, cs, pa, andbp. Theia program has a fixed network, and the
aa and cl programs have networks of variable size but with a totally predict-
able architecture, so a .net file is not necessary.

The .net file consists of several sections, some of which may be optional.
These sections are definitions, network, constraints, biases (for ¢s, pa, and
bp), and sigmas (used in harmony mode in ¢s). Each section plays a dif-
ferent role in defining the network. The definitions section is used to
specify the number of units in the network and also specifies other crucial
variables. The network section is used to specify the pattern of connections
among the units. Connections are of various types, each designated by a
single letter. These connection types are defined in the constraints section,
so called because the different types of connections are specified by con-
straints on the values they can take. The biases and sigmas sections specify
characteristics of the biases and sigmas (if any) associated with the units in
the network. Like connections, biases and sigmas can be of various types,
each designated by a single letter defined in the constraints section. The
definitions section of the .net file must come first, and is followed by the
constraints section, if any (some connection types are predefined). Then
comes the network section, followed by the biases and sigmas sections, if
required.

264 NETWORK FILES
The Sections of the Network File

Each section of a .net file begins with the name of the section (all lower-
case), followed by a colon (e.g., definitions:) on a line by itself. The section
ends with a line containing end. The following paragraphs describe the
details of the information required in each section and the format of that
information.

Definitions. The definitions section is used to specify basic parameters
of the network architecture. For iac and ¢s, the only parameter that must
be defined is nunits. If you wish to read patterns from a file, you will also
have to define ninputs; this can be done in the definitions section, in the .str
file, or by hand anytime before the get/ patterns command is issued. For
pa and bp, nunits, ninputs, and noutputs must be defined. Other variables
may also be initialized in the definitions, although they can also be set in
the .str file.

Definitions are given by placing the name of the variable and the value
you wish to assign to it on a line by itself. Thus, the definitions section of
the jets.net file used with the iac program looks like this:

definitions:
nunits 68
end

Constraints. The constraints section of the file is used to define the
meanings of the characters that are used in the network part of the file to
designate the weight types. Each constraint definition is given on a
separate line, consisting of a lowercase letter called the constraint character,
followed by a list of constraint attributes. Constraint attributes can be:

® A floating-point number. The initial value assigned to each weight
designated with the constraint character. If no value is given, the
initial value will be 0, unless otherwise specified by another attri-
bute. For unmodifiable weights, the weight will remain at this
value.

® Positive. The weight is constrained to have a nonnegative value.
This constraint is imposed after every weight adjustment; weights
with this constraint that go below 0 are reset to 0.

® Negative. The weight is constrained to have a nonpositive value.
This constraint is imposed after every weight adjustment;, weights
with this constraint that go above 0 are reset to 0.

® Random. The weight is initialized to a random value in a range
given by the parameter wrange. Positive random weights vary

APPENDIX C. FILE FORMATS 265

between 0 and wrange, negative random weights vary between
—wrange and 0; otherwise the weight will vary between +wrange/?2
and —wrange/ 2.

® Linked. The weight is constrained to have the same value as all
other weights designated with this constraint character. This con-
straint is imposed at initialization and during each change to the
weights. All the weights that are linked together are adjusted by an
amount equal to the sum of the adjustments that would be made to
each.

Several constraint letters are predefined. These are:

r Stands for random. The connection is set to a random value
between +wrange/2 and —wrange/ 2.

p Stands for positive random. The connection is set to a random posi-
tive value between +wrange and 0.

n Stands for negative random. The connection is set to a random
negative value between —wrange and 0.

(The single character "."). This is the only character that is not an
actual letter that can occur in the network specification itself. It
specifies that the connection should be initialized to 0 and be
treated as unmodifiable—that is, not subject to change through
learning.

Note that positive, negative, and link constraints are only enforced in the
bp program. Inpa they are not used.

The constraints section of the jets.net file set up for use with iac looks
like the following:

constraints:
ul.0

d 1.0

v =-1.0

h -1.0

end

Once this has been interpreted, it means that connections specified in the
network section with the letters u or d will be assigned a weight of 1.0, and
connections specified with letters v or A will be assigned a weight of —1.0.
Though all the weights labeled & or v are assigned the same value according
to this specification, it would be a trivial matter to dissociate the two by

266 NETWORK FILES

giving v, say, a value of —2.0; this is in fact what we did in the jets.net file
that is set up for use with the cs program.

Network. The network section of the file specifies which of the defined
constraint characters applies to each of the connections in the network.
This part of the file can come in either of two formats. The more elemen-
tary format consists of a full matrix of nunits rows of characters, each nunits
long and containing no tabs or spaces. This is the format used in the jets.net
file. In this format, the entry in a particular row-column location specifies
the connection to the unit whose index is the row number from the unit
whose index is the column number. Thus in the jers.net file, the connec-
tion in row 0 column 1 specifies a connection to the Jets unit (unit 0) from
the Sharks unit (unit 1). This connection is marked as a v, which has been
defined to have the value —1.0. This connection will therefore be assigned
the value —1.0.

Note that weight values are assigned according to the network specifica-
tion file when the .net file is processed. Random weight values are re-
assigned in programs that learn (pa, bp, aa, and cl) when a reset or newstart
command is executed. Note that the weight values assigned in the network
specification file can be overridden, either by setting individual weights
using the set/ weights command or by reading in a file of weights using the
get/ weights command.

The network specification for the jers.net file is rather large, so we will
use a simpler example instead: the cube.net file used with the es program.
This consists of a set of 16 rows of 16 dots:

network:

The actual values of these weights are set by reading in the cube.wts file
using the get/ weights command.

APPENDIX C. FILE FORMATS 267

Letters in the network specification can be uppercase or lowercase. If the
letter is lowercase, the corresponding weight is modifiable; if it is upper-
case, it is fixed. Of course, no weights are modifiable in programs that do
not learn; thus for iac and cs, the characters v and V are synonymous.

A more complicated format for the network specification file is also
available. In this format, connections are specified in blocks. A block
specification is simply a specification of a portion of the full conceptual
matrix of nunits by nunits connections. The block specification specifies
which subpart of the matrix the specification applies to, as well as the
characteristics of the connections in the block. The subpart is specified by
indicating which units receive the connections specified in the block and
which units send these connections to these receivers.

A block specification begins on a line consisting of a % character. The
block-specification line also contains four integers. These integers
represent:

The index of the first receiving unit in the block.
The number of receiving units in the block.

The index of the first sending unit in the block.
The number of sending units in the block.

S I S B

For example, in a pattern associator network, there will generally be
some number of input units, each projecting to some number of output
units. The following specification can be used to set up such a network,
with 12 input units and 8 output units:

network:

% 12 8 0 12
FrYrrrrCECEL
Y rErTrrrrr
rTYFYrYrrrrryr
Dt o i ofe 43 50 1 3 8 G o
YEXYIFrTrrrrrr
s gl g s e o o 5 e o
EEYYYYIEXrrr
it i) o o1 o4 o &3 B i
end

The %-line specifies a block of connections coming into unit 12 and the
next 7 units (for a total of 8 receiving units) from units 0 and the next 11
units (for a total of 12 sending units). The next eight rows, one for each
receiving unit specified on the %-line, each consists of 12 r’s, one for each
sending unit specified in the %-line. The r’s indicate that these weights
should be initially random and modifiable.

Note that if all of the weights in a block are to be of the same type,
you can specify this by putting the letter specifying the type immediately

268 NETWORK FILES

following the %, with no intervening space. Thus the preceding example
could be given more succinctly as follows:

network:
$r 12 8 0 12
end

Note that a network can consist of either a single, complete matrix of
connections or of one or more block specifications. However, there is an
important restriction:

A particular receiving unit can only be specified in a single block.

Finally, note that when block specifications are used, weights are only allo-
cated for the connections actually specified in the blocks, and files of
weights are assumed to contain values only for the weights that have been
allocated. A detailed specification of the format of such files is given
below.

Biases. The biases section of the file (applicable only to pa, ¢s, and bp),
like the network section, can be given in either of two formats. In the
simpler case, it consists of a row of nunits characters indicating the charac-
teristics of the bias terms for all of the units in the network. Alternatively,
biases may be specified in blocks, analogous to those used in the network
specification. Block specifications consist of a line beginning with a %, fol-
lowed by two integers that indicate the first unit in the block and the
number of units in the block. The following line then gives a row of char-
acters indicating the specification for each bias in the block; or if each bias
is to be specified with the same character, the character may be given
directly after the %. For example, random biases for the eight output units
in the pattern associator network mentioned earlier could be specified in
either of three ways:

............ YIIXrrrrr

biases:
$ 12 8

2 5 0 o o i
end

biases:
%r 12 8
end

APPENDIX C. FILE FORMATS 269

Note that when biases are in use, the programs allocate biases for all units
in the network, even when only a subset of the biases are specified using
block notation.

Sigmas. The sigmas section of the file is analogous to the biases section,
though it is applicable to harmony mode in the cs program only. The values
associated with the specification characters are taken to specify the value of
the parameter sigma for units in a harmony network.

An Example Network File

Here we give a complete example of a .net file, taken from the xor.net
file used with the bp program. It specifies a network with two input units,
one output unit, and two hidden units, with initially random, modifiable
connections from each input unit to each hidden unit and from each hidden
unit to the output unit. It also specifies random, modifiable bias terms for
the hidden units (units 2 and 3) and the output unit (unit 4).

definitions:
nunits 5
ninputs 2
noutputs 1
end
network:
$r 2 2 0 2
$r 4 1 2 2
end
biases:

$r 2 3

end

The first line in the network section specifies that the hidden units (units 2
and 3) receive connections from the input units (units 0 and 1) and that
these connections are modifiable, with initially random connection
strengths. The next line specifies that the output unit (unit 4) receives
connections from the hidden units (2 and 3), which are also modifiable,
with initially random values. The biases section indicates that the biases of
units 2 through 4 are also modifiable and initially random.

WEIGHTS FILES

The .wts files can be read into or written out from all of the programs
other than ia, which has no matrix of weights as such. The format of these
files is governed by the network specification file, according to the follow-
ing conventions.

270 WEIGHTS FILES

The .wis file consists of a list of the weights in the network, followed by
a list of the bias terms, if any. The list of weights can be thought of as
consisting of a series of rows, one for each unit with incoming connections
from other units. Rows are ordered by unit number, from first to last.
Each row consists of one floating-point number for each connection to the
receiving unit it applies to. These numbers specify the values of these con-
nections, ordered by unit number, from first to last. Row elements must
be separated from each other by any number of spaces, tabs, or newline
characters. Thus, the order of entries is crucial, but spaces, tabs, and new-
lines' can be used freely for readability without affecting the way the file is
interpreted. In fact, the save/ weights command places only a single weight
on each line of the file it produces, even though the weights are conceptu-
ally grouped into rows. This is done to avoid the possibility of exceeding
line-length limitations imposed by the file system on your computer.

In the simplest case, the .net file will specify a full matrix of nunits by
nunits connections. In this case the list of weights in the .wis file will con-
sist of nunits rows, one for each unit, and each row will contain nunits
floating-point numbers, one for the connection of each unit to the row unit.

More complex cases arise when weights have been specified using block
specifications. In this case, rows of weights are only given for units that
actually receive connections from other units, and each row will only have
entries for the connections specified in the block specification involved.
Thus the xor.wits file, which is used in the XOR example in Chapter 5, con-
tains only three rows of weights, one for each of the two hidden units and
one for the output unit. Each row contains only two entries since each of
these units receives a connection from only two other units.

Following the list of weights comes the list of biases, if any. Note that if
a biases section is present in the .ner file, a full list of nunits biases is
expected in the .ws file, even if only a subset of the bias terms were actu-
ally specified in the .mer file. Each bias is a floating-point number,
separated from others by spaces, tabs, or newlines.

An Example Weights File

As an example of a .wis file, we give here the file xor.wts. It was created
using the save/ weights command and is read into the bp program using the
get/ weights command, after the xor.net file has been used to set up the net-
work. Unspecified biases are simply stored as 0.00000. Here is the file:

1 The newline character is the character in a file that separates lines from each other.

APPENDIX C. FILE FORMATS 271

0.432171
0.448781
-0.038413
0.036489
0.272080
0.081714
0.000000
0.000000
-0.276589
-0.402498
0.279299

Note that the weights file contains no special indications about where the
rows of weights end or even where the weights end and the biases begin.
This is because the number of conceptual rows of weights, the number of
weights per row, and the number of biases is determined strictly by the
specifications contained in the .net file.

TEMPLATE FILES

The template file is used to specify the appearance of the display screen
and the way in which various display objects, called remplates, will appear on
the screen. The file consists of an optional /ayout, followed by a series of
template specifications. The layout is used to set up the background on
which the various templates will be displayed and to specify where the tem-
plates will occur in the background. If the layout is omitted, template loca-
tions can be specified directly. We will first describe the format for the lay-
out, then describe the template specifications.

The Layout

If there is a layout, it must occur at the very beginning of the template
file. The first line of the file must be

define: layout

The first line can also contain two integers indicating the number of rows
and columns to use on the screen. By default, the program assumes it can
use 23 rows (lines) and 79 columns. This is one row and column less than
the typical screen size, to make it easy to review screen dumps simply by

272 TEMPLATE FILES

using the fype command in MS-DOS. Twenty-three lines of 79 characters
will fit on the screen without scrolling off the top. To change this default,
give the desired number of rows and columns after the word layout. For
example, to increase the size of the display to 47 by 131, the first line
would be

define: layout 47 131

Subsequent lines are taken as containing literal characters to plot directly
to the screen and $’s, which specify where templates are to be inserted. No
tabs are allowed in the layout; you must use spaces as separators, although
it is perfectly acceptable for lines to be blank or less than 79 characters
long. The layout thus gives an exact image of what the screen is to look
like. The end of the layout is indicated by a line containing the single word
end. The layout is printed to the screen starting on line 5, and may be up
to nr — 5 lines long where nr is the number of rows. Five rows are reserved
for the command line at the top of the screen and the help area just below
it,

An Example Layout From a Template File

The layout for the cube example used with the ¢s program (in the file
cube.tem) is specified as shown in Figure 1. The layout is read from top to
bottom and, within each row, from left to right; the locations of the §’s are
stored in the order encountered. Successive $’s in the layout are numbered
starting from 0. Below we explain how the $’s are paired up with tem-
plates.

The Template Specifications

Each template specification consists of a number of entries, or template
specifiers, separated by white space (spaces, tabs, or newlines). To illus-
trate, we will describe the template specification from the cube.tem file that
is responsible for putting the value of the variable cycleno in the correct
place on the screen. The specification is

cycleno variable 1 $ 2 cycleno 3 1

The entries correspond to the following specifiers. The specifiers are listed
in the order encountered, with their values from the cube.tem example
given in parentheses.

layout

define:

APPENDIX C. FILE FORMATS

P77 SR S L 4
@
[
=}
o} n P
o] c 7]]
= (0])] Q o]
() B E =1 0}
—] s O [oN
[S I o] o e} =
> 2 2 o] [0}
L8] = o o P
%1 H
g5 o —————— —
W [
] | ~
| | =
I | B
| “ | S
| i -1
| Q| |
| |
[|
1]
- 1 (=
5 —————— — —
o~ -
Py =
3 £
B ~
— ey
ur o s
0
¥ e
3 @ —_————— —
Q1 ~ Q ~
I M N
| RS =g
I B ~
I 1] T
i e
I W
| I
1 |
| 1
- 1 o
3 1~
Q 0~ 1 ~
e, I
~ 1
E I
— 1
ur 3 @ ———————
(1}

blr

273

FIGURE 1.

274 TEMPLATE FILES

TNAME (cycleno)
The name for the template, or display object, itself. This name can
be used as an argument to the display command, and will cause the
template to be displayed on the screen. Thus to display this tem-
plate you would enter

display cycleno

Note that a number of templates can have the same name. If such a
name is given to the display command, all of the templates with
that name will be displayed together.

TYPE (variable)
The template type of the template. There are a number of dif-
ferent template types, which will be described in the next section.
The variable template type is used for most single-valued variables
such as c¢ycleno.

DLEVEL (1)
The display level of the template. The display level is an integer
that determines whether the template will be displayed when the
screen is updated by the program. There is a global dlevel variable
and a dlevel value associated with each template. Templates are
updated if their specific dlevel is less than or equal to the global
dlevel. However, templates whose specific dlevel is 0 are treated
specially. Generally, these are templates that display information
that is not expected to change in the course of processing. These
templates are only displayed if the screen has been cleared since the
last time the screen was updated.

POS ($ 2)
This compound entry specifies the row and column location of the
upper left-hand corner of the screen region in which the template is
to be displayed. The "$ 2" notation is used to specify which § in
the layout should be taken as the one indicating the upper left
corner of this template. Note that $’s are numbered starting with
0, in the order they are encountered in processing the layout, as
specified above. An alternative notation is "$ n," where the n
stands for next (note that n is used literally here). This notation is
taken to mean the next § after the one specified in the previous
template specification. If no templates have already been specified,
n is taken to mean 0. As a third alternative, the compound entry
can be two integers. These are taken to indicate directly the row
and column number of the upper left corner of the template. Note
that the row number must be 5 or greater and must be less than the
number of rows.

VNAME (cycleno, second occurrence)
The name of the variable as it is known in the program. Note that
this is not the same as the name of the template, mentioned above;

APPENDIX C. FILE FORMATS 275

two templates with different names can display the same variable.
In general, any of the variables that can be accessed by the set and
exam commands can also be accessed in templates.

SPACES (3)
The number of spaces the program is to use in displaying this tem-
plate.

SCALE (1)
A floating-point number that specifies a scale factor that is multi-
plied with the value of the number to be displayed. This is particu-
larly useful for floating-point variables that are to be displayed in
small fields without decimal points.

Other specifiers are more specific to particular template types. These are
defined in discussing each template type below.

The Template Types

Template specifications always begin with the TNAME, followed by the
TYPE. The following list describes the different types that are available,
together with a list of the specifiers that must come after the TYPE. Note
that for each template, all of the specifiers must be present in the order
indicated. Remember also that the POS specifier is a compound specifier,
consisting of two entries separated by white space.

label (DLEVEL POS ORIENT SPACES)
The TNAME of this template is taken as a literal label to be
displayed either horizontally or vertically, as determined by the
value of ORIENT (h or v). The label is truncated if it is longer
than SPACES characters.
variable (DLEVEL POS VNAME SPACES SCALE)

The single-valued variable VNAME is displayed. The variable may
be an integer, a floating-point number, or a character string.
Integers and floating-point numbers are multiplied by SCALE
before the value is displayed. In either case, the value is truncated
to an integer. Thus a variable whose internal value is 2.67 will
display as a 2 if SCALE is 1, as 26 if SCALE is 10, and as 267 if
SCALE is 3. Negative numbers are generally displayed in reverse
video. Numeric values that would take up less than the available
number of spaces are right-justified; this is typically appropriate for
numbers. Values that would take up too much space are displayed
according to the conventions described in Chapter 2. For character
string variables (e.g., pattern names), if the value of the SPACES
field is negative then the string is left-justified. Thus "—5" means
that five spaces are allocated and that the string always begins at the

276

TEMPLATE FILES

left end of the region. SCALE is not used for character strings, but
a value must be specified anyway.

Sfloatvar (DLEVEL POS VNAME SPACES SCALE)

vector

The value of the scalar floating-point variable VNAME is displayed
to four decimal places, in standard floating-point notation. The
value is multiplied by SCALE before displaying and is right-
justified within the SPACES indicated. If the value is too big, it is
truncated on the right so that it fits the available SPACES.
(DLEVEL POS VNAME ORIENT SPACES SCALE START
NUMBER)

NUMBER elements of the vector VNAME are displayed, starting
with element START. The vector may consist of integers,
floating-point numbers, or character strings. For example, a list of
unit names can be displayed as a vector template. If ORIENT is A,
the elements of the vector are displayed across the same line. If
ORIENT is v, the elements are displayed starting in the same
column, on successive lines. In both cases multiple characters
making up the same element are displayed horizontally. For
numeric variables, each element is multiplied by SCALE and then
truncated to an integer, as described above for variable templates.
For vectors of character strings, SCALE (which should have an
integer value in this case) is interpreted as a specifier indicating the
number of blanks to place at the beginning of the string. This
allows the user to put blanks between the successive elements of a
string vector when displayed horizontally.

label array (DLEVEL POS VNAME ORIENT SPACES START NUMBER)

This template is similar to the preceding one, but it is used only for
vectors of character strings or labels, and it allows strings to be
displayed horizontally or vertically. The value of the ORIENT
specifier applies to the orientation of the individual strings. If
ORIENT is A, each individual string is shown horizontally, and suc-
cessive strings are shown on successive lines. If ORIENT is v, each
individual string is shown vertically, and successive strings are
shown in successive columns.

look (DLEVEL POS VNAME SPACES SCALE SEPARATION LOOK-

FILE)

This template type can be used with either vector or matrix vari-
ables. It consults the LOOKFILE (which must be present in the
directory the program is being run in) for a specification of a rec-
tangular grid of locations in which to display elements of the vector
or matrix. Each element is multiplied by SCALE and then trun-
cated to an integer, as described above for variable templates.
SPACES character positions are allowed for each element; adjacent
elements are SEPARATION spaces apart. Thus if SPACES is 2,
SEPARATION is 4, and SCALE is 10, three adjacent elements with
the values 1, 0.5, and 7 would appear as

APPENDIX C. FILE FORMATS 277

10 5 70

label look (DLEVEL POS VNAME ORIENT SPACES SEPARATION

matrix

LOOKFILE)

This template type is similar to the previous one, but is used with
arrays of strings or labels, such as unit names and pattern names.
ORIENT is h or v, indicating whether individual strings should be
displayed horizontally or vertically.

(DLEVEL POS VNAME ORIENT SPACES SCALE ST ROW
N_ROWS ST COL N_COLS)

A section of the matrix VNAME is displayed. The section begins
in row ST ROW and column ST COL, and is N ROWS by
N _COLS in size. Note that when the matrix is a weight matrix, the
row indexes correspond to the units receiving the connections and
the column indexes correspond to the sending units. Thus to show
the weights for connections to units 4 through 7 from units 0
through 3, ST ROW would be 4, N ROWS would be 4, ST COL
would be 0, and N_COLS would be 4. Also note that arrays of vec-
tors are essentially matrices. Thus, for example, ipattern is a matrix
variable, consisting of npatterns rows, each ninputs long. In this
case, then, the row indexes correspond to patterns and the column
indexes to elements of the patterns. The ORIENT field specifies
the orientation of the rows of the matrix. Thus if ORIENT is A,
the rows are displayed horizontally and the columns are displayed
vertically. If ORIENT is v, the rows are displayed vertically and the
columns displayed horizontally. This is equivalent to transposing
the matrix.

An Example List of Template Specifications

As a full example, the template list from the file cube.tem is shown here:

cubel look 1 $ 0 activation 1 10 1 cubel.loo
cube?2 look 1 $ 1 activation 1 10 1 cube2.loo
cycleno variable 1 $ 2 cycleno 7 1

updateno variable 1 $ 3 updateno |

uname variable 1 $ 4 cuname -7 1

goodness floatvar 1 $ 5 goodness 7 1

temperature floatvar 1 $ 6 temperature 7 1

weight matrix 5 $ 0 weight h 4 10 0 16 0 16
weight vector 5 $ 2 uname v 6 10 16

weight vector 5 $ 7 uname h 4 1 0 16

The POS specification consists of a § followed by a number. Each template
is, therefore, displayed at the location of the $ whose index is given by the

278 LOOK FILES

second part of the POS specification. Most of the different template types
are illustrated here, as well as several useful tricks. For example, there are
three templates called weight. When the user enters display/ weight, all
three are displayed simultaneously. In this way, it is possible to put
together "macrotemplates” from several ordinary templates.? Another trick
is the use of the SCALE specifier with vectors of character strings. This
occurs in the last entry, which specifies a horizontal array of unit names.
The SPACES field indicates that 4 characters are allocated to each unit
name, but the SCALE field indicates that each unit name is to be left-
padded by a blank. Thus the four spaces are occupied by a blank, followed
by the first three characters of the unit name.

LOOK FILES

The look files specify where in a rectangular array the elements of a vec-
tor or matrix are to be displayed. The format of the look file is as follows:
The first line contains two integers, indicating the number of lines of
entries and the number of entries per line. Below this, there are as many
lines as specified in the first argument, each containing as many entries as
indicated by the second argument.

When the object being displayed is a vector variable, the entries may be
integers, in which case they are taken to be the index specifying the ele-
ment of the vector that is to be printed at the corresponding location in the
display. Alternatively, entries may simply be single dots ("."), which are
taken to indicate that nothing is to be displayed at this location.

An Example Look File

The file cubel.loo is shown here as an example. This look file is used by
the first template that was specified in the cube.tem file to indicate where,
with respect to this template’s upper left-hand corner, the Oth through 7th
elements of the activation vector are to be displayed. Entries in the look

2 A variant of this involves naming a group of templates with names that begin the same, but
end differently. This way if the user enters the initial part that is shared, all of the variants are
displayed, but if the user enters enough of the string to specify the template uniquely only the
unique template that matches the full string entered is displayed. For example, the environ-
ment, including the set of pnames and ipatterns (and possibly tpatterns) is often specified by
templates called env.pname, env.ipat, and env.tpat.

APPENDIX C. FILE FORMATS 279

file itself must be separated by white space (spaces, tabs, or newlines), but
these do not affect the actual appearance of the display. The spacing of the
display itself is controlled in part by the SEPARATION variable associated
with the template; this variable indicates the number of successive spaces
between look elements along the same line.

1:5: 1.9

0 1
2 : 3

4 . 2
6)

An Example Look File for a Matrix Variable

When using look files with matrices (such as weight matrices), each non-
dot entry specifies the row and column in the underlying internal matrix of
the element to be displayed at that location. Row and column numbers are
separated by a comma. As an example, the following look file is used to
specify a layout for the weights coming into each of two hidden units from
each of sixteen input units. This is the file /6wei.loo, used with the ¢l pro-
gram. The file lays the weights out in two square arrays, one for the con-
nections coming into one of the units and one for the connections coming
into the other. The column of dots down the middle separates the two
arrays.

4 9

16,0 16,1 16,2 16,3 . 17,0 17,1 13,2 17,3
16,4 16,5 16,6 16,7 . 17,4 17,5 17,6 17,7
16;8 16;9 16,10 16,11 =« 17;8 17,9 17,10 17:11

1612 16313 16314 16,156 « 112 07313 17,14 14,15

280 PATTERN FILES

PATTERN FILES

Pattern files are of two kinds. One kind contains a list of input patterns;
the other contains a list of input-target pattern pairs. The first kind is used
with iac, cs, aa, and c¢l. The second kind is used with pa and bp. We
describe the input pattern type first.

Files for Lists of Input Patterns

Files containing lists of input patterns consist of a sequence of patterns.
Each pattern consists of a name followed by ninputs entries specifying the
values of the elements of the pattern. The entries are separated by white
space (spaces, tabs, or newlines).

Each name is a string of characters beginning with a letter; pattern names
should not begin with any of the digits. By convention we use the letter p
as the first letter of the name of any pattern which for mnemonic reasons
would begin with a digit.

The entries specifying the values of elements of the pattern are treated as
floating-point numbers. The following special single-character entries are
recognized:

(dot) is assigned the value 0.0.
+ (plus) is assigned the value +1.0.
— (minus) is assigned the value —1.0.

Files for Lists of Input-Target Pairs

These files contain a sequence of pattern pairs. Each pair consists of a
name, ninputs entries specifying the elements of the input pattern, and nout-
puts entries specifying the elements of the output pattern. Entries are
separated by white space as in input pattern files. There is no special
separation between input and target patterns. Both input and target entries
are treated as floating-point numbers, with the same special characters
recognized as in input pattern files.

In bp, negative entries have special meanings that are different for input
pattern elements and target pattern elements. A negative input pattern ele-
ment is interpreted as an instruction to set the activation of the correspond-
ing input unit to mu times its previous activation plus the activation of the
unit whose index follows the minus sign. A negative target pattern element
is interpreted as an instruction to ignore the output generated by the
corresponding output unit. The error for this unit is set to 0.

APPENDIX C. FILE FORMATS 281

Finally, the reader should note that in bp, the parameter tmax is used to
modify target elements specified with entries of 1 or 0. If the entry is 1,
the target is set to tmax, and if the entry is 0, the target is set to 1—tmax.
By default tmax is set to 1.0, but sometimes it is useful to use a value like
0.9. In this case, if the entry is 1, the target is set to 0.9, and if the entry is
0, the target is set to 0.1.

